
A Fault-Tolerant Distributed Legacy-based

System and Its Evaluation

A. Bondavalli1, S. Chiaradonna2, D. Cotroneo3, and L. Romano3

1 Dipartimento di Sistemi e Informatica, Universitá di Firenze,
Via Lombroso 6/17, 50134 Firenze, Italy

a.bondavalli@dsi.unifi.it
2 ISTI-CNR

Via A. Moruzzi 1, Loc. S. Cataldo, 56124 Pisa, Italy
Silvano.Chiaradonna@cnuce.cnr.it

3 Dipartimento di Informatica e Sistemistica Universitá di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy

{cotroneo, lrom}@unina.it

Abstract. In this paper, we present a complete architecture for improv-
ing the dependability of complex COTS and legacy-based systems. For
long-lived applications, such as most of those being constructed nowadays
via integration of legacy subsystems, fault treatment is a very important
part of the fault tolerance strategy. The paper advocates the need for
careful diagnosis and damage assessment, and for precise and effective
recovery actions, specifically tailored to the affecting fault and/or to
the extent of the damage in the affected component. In our proposal,
threshold-based mechanisms are exploited to trigger alternative actions.
The design and implementation of the resulting solution is illustrated
with respect to a case study. This consists of a distributed architec-
tural framework, handling replicated legacy-based subsystems. Replica-
tion and voting are used for error detection and masking. An experimen-
tal prototype deployed over a COTS-based LAN is described and has
allowed a dependability analysis, via combined use of direct measure-
ments and analytical modeling.

Keywords: Software Implemented Fault Tolerance, Fault Diagnosis, Fault
Treatment, Legacy systems, Threshold-based mechanisms, CORBA Architec-
tures

1 Introduction

We are witnessing the construction of complex distributed systems, which are
the result of the integration of a large number of components, including COTS
(Commercial Off-The-Shelf) and legacy systems. The resulting systems are being
used to provide services, which have become critical in our everyday life. It
is thus paramount that such systems be able to survive failures of individual
components, as well as attacks and intrusions, i.e. they must provide some level

of (reduced) functionality also in the event of faults. The integration of COTS
components and legacy subsystems in a wider infrastructure is a challenging
task, for a variety of reasons, and in particular:

– COTS components are relatively unstable and unreliable [3]. Nevertheless, to
reduce system development time, the use of unmodified COTS components
is mandatory in modern distributed systems;

– Legacy systems were designed as disjoint components and they were not sup-
posed to interoperate. As a consequence, the integration environment might
stimulate legacy components in unexpected ways, thus leading to potential
failures. This is a well-known problem to integration test professionals. In-
deed, the task of the integration test is to check that components or software
applications, e.g. components in a software system or - one step up - software
applications at the company level - interact without error. Many examples
from field experiences can be found at
http://www.sqs.de/english/casestudies/index.htm.

For these reasons, without effective architectural solutions, survivable infrastruc-
tures consisting of COTS and legacy-based applications, are virtually impossible
to obtain. In order to be effective, fault tolerance strategies in such systems need
to be revisited. More precisely, mechanisms and strategies to implement fault
tolerance functions have to be tuned, to account for the many differences be-
tween COTS and legacy-based systems and traditional safety-critical systems.
Recently some proposals have been made, which allow to build dependable sys-
tems by integrating COTS and legacy components [4], [5], [6], [7], [8], [9], [10].
These proposals mainly concentrate on error processing, either by NMR-style
replication or by organizing distributed membership of replicas. However, lit-
tle attention has been paid to the problem of maintaining system health and
preserving tolerance capabilities.

This paper focuses on diagnosis and fault treatment and proposes their in-
tegration with mechanisms for error detection and processing. Fault treatment
consists of fault diagnosis, and recovery/reconfiguration [11]. Although diagnosis
has been extensively studied, distributed COTS and large legacy-based systems
raise a variety of issues which have not been addressed before. Such issues stem
from a number of factors, which are briefly described in the following. First, the
designer (system integrator) has limited knowledge and control over the system
as a whole, as well as over individual components, since for most components
and subsystems the internal design is not known. Second, COTS and legacy com-
ponents are heterogeneous, whereas the targets of traditional diagnosis are – to
a large extent – homogeneous. Third, diagnostic activities must be conducted
with respect to components which are large grained, whereas traditional appli-
cations (such as safety critical control systems) typically consist of relatively fine
grained components. It is thus not practical (or possible at all), as soon as an
error is observed, to declare the entire component failed and proceed to repair
and replacement (repair implies at least very costly recovery and re-integration,
replacement may not be possible at all).

For the above discussed reasons, in a COTS and legacy-based infrastructure
diagnosis must be able to assess the status or the extent of the damage in indi-
vidual components, so to carefully identify the most appropriate fault treatment
and system reconfiguration actions and when they have to be applied. To this
aim, it is foremost that data about error symptoms and failure modes be care-
fully gathered and processed. One shot-diagnosis is thus inadequate: an approach
is needed, which collects streams of data and filters them by observing compo-
nent behavior over time. Several heuristics based on the notion of threshold have
been proposed and have effectively been applied to many fields (e.g. diagnosis
and telecommunications). All these mechanisms take their decisions based on
the analysis of streams of data, consisting of sequences of observations.

We present a complete architecture for improving the dependability of com-
plex COTS and legacy-based systems. We emphasize aspects related to fault
treatment. We had to face several key issues, and in particular:

– Limiting the probability of common mode failures - The replicated legacy sys-
tems were identical and thus they could exhibit common mode failures. Since
we could not modify the legacy systems, we enforced diversity at different
architectural levels when we integrated the legacy systems in our replication
framework. More details about the specific measures that we have taken are
provided in subsection 3.2.

– Limiting the probability of interaction faults - These are typically caused
by mismatches or incompatibilities between the legacy applications and the
COTS platforms and software components. Research has demonstrated that
in order for an error detection process to work properly, data from individual
replicas must be conditioned before comparisons are made [19].

We detail the description of the architectural solutions we have implemented
with respect to a case study. We also evaluate the effectiveness of the suggested
approach via combined use of direct measurements on the system prototype
and analytical modeling. We use a real prototype to populate the model with
realistic parameter values. The rest of the paper is organized as follows. Section 2
introduces previous relevant work and illustrates the system we use as a case
study. Section 3 details our complete fault tolerance strategy highlighting fault
treatment and describes our implementation. Section 4 describes our approach to
the analysis, and the models we built. Section 5 reports the results we obtained
so far, while section 6 concludes the paper.

2 Preliminaries

2.1 Background

A great deal of research has been conducted on providing support for depend-
ability to existing applications via distributed architectural frameworks. These
projects differ from one another under many aspects, including the nature of the
fault tolerance mechanisms (hardware, software, or a combination of the two),

and the level of transparency to the application level (application aware/unaware
approach). Among the others, it is worth mentioning [6], [7], [9], [10], [13], as
well as the FT CORBA initiative [14]. All these projects focus on error process-
ing, but they address fault-treatment only to a limited extent. There are also
several commercial products which claim to incorporate fault tolerant facilities
(such as J2EE [2] and Microsoft .NET [1], to name a few). As to our personal
experience, in [9] we presented a middle-tier based architectural framework for
leveraging the dependability of legacy applications in a way transparent to the
clients. Such a framework can be deployed on top of any CORBA infrastructure.
The fault tolerance mechanisms used include error detection, different forms of
error processing, graceful degradation, and re-integration. A system prototype
was developed and tested over a distributed heterogeneous platform. A prelim-
inary analysis of such a prototype clearly indicated that a more effective fault
treatment support was needed to significantly improve the dependability level
attained by the system. Thus, we started investigating diagnosis in COTS- and
legacy-based applications. More precisely, we addressed issues related to goals
and constraints of a diagnostic sub-system based on the concept of threshold,
which must be able to i) understand the nature of errors occurring in the sys-
tem, ii) judge whether and when some action is necessary, and iii) trigger the
recovery/repair mechanisms/staff to perform the adequate actions to maintain
the system in good health [15]. This led to the definition of a diagnostic sub-
system scheme which consists of two distinct components. One, the Threshold-
Based Mechanism (TBM), implements a threshold-based algorithm, the other,
the Data Processing & Exchange (DPE), is in charge of conveying to the former
the data from the detection sub-system, possibly performing some processing.
The two blocks (TBM and DPE) might well be distributed in actual implementa-
tions of the system. Typically, DPE functions would be co-located with the error
detection sub-system. The specific algorithm implemented by the TBM is called
alpha-count, and is described in [12]. Among the heuristics based on the concept
of threshold, the alpha-count family of mechanisms appears to be particularly
interesting for our purposes due to the clear and simple mathematical charac-
terization and to the thorough analysis already conducted. In the following, we
briefly describe how the alpha-count mechanism works. The alpha-count pro-
cesses information about erroneous behavior of each system component, giving
a smaller and smaller weight to error signals as they get older. A score variable αi

is associated to each not-yet-removed component i to record information about
the errors experienced by that component. αi is initially set to 0, and accounts
for the L-th judgement as follows:

– αi(L) = αi(L − 1) + 1 if channel i is perceived as faulty during execution L

– αi(L) = K ∗ αi(L − 1) (0 < K < 1) if channel i is perceived as correct during

execution L

When αi(L) becomes greater than or equal to a given threshold αT , compo-
nent i is diagnosed as failed and a signal is raised to trigger further actions (error
processing or fault treatment). The effectiveness of the mechanism depends on
the parameters K and αT . The optimal tuning of these parameters depend on the

expected frequency of errors and on the probability c of correct judgements of the
error signaling mechanism. The analysis performed in [12] has clearly shown the
trade-offs between delay and accuracy of the diagnosis and thoroughly discussed
ways to tune these parameters for maximizing performance.

2.2 The application used as a case study

By legacy application, we mean a software program for which re-engineering or
maintenance actions are either impossible or prohibitively costly. The applica-
tion used as a case study is a multi-tier application, consisting of legacy code,
written in C, which uses a COTS DBMS, namely PostgreSQL for stable storage
facilities. The application runs on a Unix-like kernel, on top of a commodity PC
or a workstation. The data base physical files are stored on disk. Services can be
grouped in two main categories, namely Queries and Updates. The legacy ap-
plications reads data from the database to the program dynamic memory. The
application allocates new memory when it needs some. Records are stored in a
linked list like data structure. The DBMS also caches data.

Legacy Server

COTS Operating System

Cached
Data

COTS Hardware

COTS DBMS

COTS Operating System

COTS Hardware Persistent
Data

Application Node Storage Node

Cached
Data

Fig. 1. Case-study legacy application

Since we could introduce a satisfactory degree of diversity (more details about
this in section 3.2) in the running environments of our legacy subsystems to make
the probability of common mode failures very low, our objective is to contrast
the effects of independent faults hitting the back-end servers. The application
was made more dependable by replicating the legacy application according to a
TMR scheme. In particular we consider the following type of faults:

– Hardware-induced faults - These are faults stemming from instabilities of the
underlying hardware platform [16]. We limit our attention to intermittent
faults, since these are by far the predominant cause of system errors [17];

– Software errors - These are faults related to flaws in the application and/or
in the software infrastructure. Examples are errors in the design and/or im-
plementation process of the application and/or of the Operating System,
or to process and/or host crashes or hangs due to inconsistent application

and/or OS level state, or to unavailability of resources due to overload con-
ditions. We distinguish between “naive” software faults, such as trivial bugs,
and ”‘subtle”’ software faults, such as memory leaking problems in the ap-
plication or system resource exhaustion. We limit our attention to the latter
kind of faults, since we assume that the former kind of faults has been de-
tected and fixed during the years long operation of the legacy system. This is
not a simplistic assumption. In fact, in the typical scenario, legacy software
has been thoroughly tested and debugged, and the vast majority of naive
bugs has thus been detected and fixed over the years. However, more subtle
software errors may still be present in the code base. As an example, errors
related to incorrect use of memory may well have gone undetected (it is
likely that the programmer has requested the allocation of a certain amount
of memory, but he has failed to deallocate it). As a result, the legacy program
may exhibit memory leakage problems. A memory leak can go undetected
for years if the application and/or the system is restarted relatively often
(which might well have been the case of the legacy application). However, if
the new deployment scenario requires that the legacy system be launched as
a long running application, these subtle problems would eventually manifest.

– Faults in the physical data-base - Corrupted data has been written to the
system stable storage.

We do not consider communication errors. Such errors occur when data gets
corrupted while traversing the network infrastructure. Indeed, unless ”leaky”
communication protocols are adopted, this kind of errors is fairly unlikely to
happen (a leaky protocol is a protocol that allows corrupted information to be
delivered to the destination).

The above discussed faults manifest as failures of the legacy application as
follows. Hardware faults may corrupt the linked list structure of the application
cache. This may happen in two ways, which result in errors of different severity.
A first problem occurs when a data item in the list gets corrupted. This is the
less severe kind of error, since at the application level it results in a corrupted
entry being written to the database or exposed to the system external interface. A
second problem occurs when a pointer gets corrupted. This is a more severe error,
since it manifests as a multiple error. One possibility is that the faulty pointer
points to a null value. At the application level, this error results in a truncated
list being written to the physical database (i.e. in possibly several items being
deleted from the database). Another possibility is that the faulty pointer points
to a wrong item in the list. This error would result in possibly several items
being added/deleted to/from the database. Yet another possibility is that the
the faulty pointer points to an invalid address. This error typically results in a
signal being generated by the Operating System and in the application being
killed.

Software faults may lead to resource exhaustion. As an example, memory
leaks may result in a huge amount of memory being allocated to the faulty
application. At first, this would result in an overload condition for the hosting
node, with potential performance faults which would manifest as timeout failures

of the application. Eventually, the Operating System would deny the allocation
of further resources to the application. Again, this would typically result in a
signal being generated by the Operating System and in the application being
aborted.

3 Fault Tolerance and System Prototype

In this section, we describe the complete fault tolerance strategy that we propose.
In particular, we highlight the fault treatment logic (i.e. alpha count mechanisms,
and data exchange techniques) and describe its implementation applied to our
case study (i.e. the architecture of the distributed legacy based system and the
roles played by individual components).

3.1 Fault tolerance approach

Our architecture is based on a middle-tier to manage three replicas of the legacy
database and COTS DBMS running on the back-end nodes (channels), used
in a TMR fashion. Thus, a voter in the middle tier assures masking of one
replica failure and conveys to our diagnostic subsystem information on errors
detected. As we already mentioned, excluding replicas or performing heavy and
costly recovery actions, at the very first occurrence of an error is too a simplistic
approach, which may well have a negative impact on the dependability of the
overall system. Thus, the middle-tier is also in charge of diagnosing the status of
the channels, and of deciding i) when to perform recovery actions, and ii) which
recovery action is the most appropriate. Based on the fault assumptions made,
we identified three recovery actions for the legacy subsystems:

1. Restart of the application - This action can fix inconsistent application level
states, but it is inefficient against errors in the system stable storage;

2. Reboot of the host computer - This action restarts the operating system
and all the service software; it can thus fix inconsistent OS states as well as
service software states;

3. Restoration of the data base - This action aims at correcting errors in the
physical data stored on disks. Restoration is conducted as follows: the recov-
ery manager reads binary data from the two other replicas and compares the
flows. If comparison is successful, bits are copied to the recovering instance. If
a disagreement is detected, a third value is read from the recovering replica.
Hopefully, it is possible to determine the correct value via majority voting.
If this is not the case, we assume the system has failed, since no valid data
is available.

The restoration procedure that we have described is of course just one of
many possible algorithms, and we do not claim it is the best alternative (the
focus of this paper is not on database restoration techniques). Two instances of
alpha-count monitor each channel. These are used to choose among the three al-
ternative recovery actions. Fault-treatment logic is as follows. Any error detected

by the voter triggers the first recovery action (application restart) and is sent
to the first alpha-count which increases the score, whereas each success is used
to decrement the score. When the threshold is reached, recovery action number
two (host restart) is executed, the score is reset to zero and an error signal is
sent to the second alpha-count, which increments its score. The score of the sec-
ond alpha-count is never decremented (assuming that normal operation does not
correct corrupted data). Finally, when the threshold in the second alpha-count
is reached, the third recovery action is performed (database restoration) and the
scores of both alpha-counts are reset to zero.

3.2 Prototype

The overall organization of the system prototype is depicted in Figure 2 and its
components are described in the following. This architecture consists of a three-
tier system. The first tier consists of a Client which uses the services provided
by the third tier, consisting of a replicated COTS and Legacy-based application
(channel).

Since the final effects of faults (i.e. the application failure modes) depend on
several factors, which include the specific characteristics of the computing node
which hosts the application, when we integrated the legacy system replicas of
individual channels in the TMR architectural framework, we enforced diversity
at various architectural levels of the deployment environment. By doing so, we
were able to lower the occurrence of common mode failures. More precisely, the
nodes in the third tier run different versions of the Linux Kernel (2.2, 2.4.18,
and 2.4.19), have different amounts of RAM (0.5 GB, 1 GB, and 256 MB), and
are configured so to launch a different set of services at startup.

The second tier mediates the service by hiding replication to the users and
providing proper management facilities (distribution of service requests, voting
upon individual results, and redundancy management). In particular, the Middle
Tier handles updates by broadcasting them to all active replicas. The connectiv-
ity between the individual components is provided by CORBA [14], specifically,
VisiBroker version 4.1.

Gateway – In order to replicate the COTS-based application, we had to
wrap it with a multicast enabled component. To this goal, we integrated in the
Gateway the reliable multicast support provided by the Ensemble group commu-
nication facility [23]. We had to attach Ensemble to the Gateway object (at one
end) and to the server replicas (at the other end). The former task was straight-
forward: we just had to link the Ensemble library to the Gateway code. The
latter task was quite more complex. In fact, the legacy application came with
a TCP/IP socket based interface. We had to intercept TCP calls, and redirect
them to Ensemble. In order to do so, we developed a virtual device driver within
the kernel of the node which hosted the legacy server. For a thorough description
of this technique, please refer to [24]. The Gateway is in charge of all data ex-
changes between the Voter and the specific COTS-based application. This entails
addressing all synchronization-related and format-related issues, since research
has demonstrated that, in order for the voting process to work properly, data

Service
Proxy

Ensemble Replica group

Service
Interface

Middle tier

Administrator

Client

Service
Manager

Admin
Interface

Channel 1

CORBA ORB

Replica
Manager

Gateway

Recovery
Manager

ENSEMBLE
MULTICAST

Adjudicator

DPE

Voter

Score
Keeper

TBM Channel 2

Channel 3

Fig. 2. Overall System Architecture

must be conditioned before comparisons are made [19]. The Gateway purifies the
data from application-specific and platform-related dependencies, thus avoiding
that system failures occur due to interaction problems.

Service Manager – The Service Manager component is in charge of config-
uring all other components. It provides functions to customize the behaviour
of individual objects (such as the specific adjudication strategy which must be
used for building the reply to be sent to the client), and to set system configu-
ration parameters (such as the number of threads in the thread pools). System
configuration is performed via the Admin Interface.

Service Proxy – The Service Proxy encapsulates the services provided by the
legacy application and exports them via the Service Interface, thus making such
(enhanced) services available to the clients.

Adjudicator – The Adjudicator component incorporates both the voter and
the DPE. The voter is in charge of selecting a presumably correct result out of
those provided by the channels. It may support several adjudication strategies
but here it is configured to perform TMR-based majority voting. Based on the
results of voting, the adjudicator provides error detection information to the
DPE. The DPE is in charge of packing and delivering error detection data to
the threshold based mechanisms (TBM) component.

Score Keeper – The Score Keeper computes the scores. It updates the alpha-
count pair which is associated to each channel. It receives data produced by the
Voter and filtered by the DPE.

Recovery Manager – The Recovery Manager is in charge of performing the
recovery actions triggered by the Score Keeper.

4 Dependability Analysis

In order to analyze and evaluate our proposal and to tune the relevant param-
eters for the alpha-counts, we adopted an approach based on combined use of
modelling and prototype-based measurements. This approach appears as the
most promising one for large complex systems [20].

4.1 Prototype settings

Fault injection experiments and performance measurements were performed on
the prototype to populate the analytic model with realistic parameter values.
Since our focus is faults which affect the channels, both the network and the
CORBA infrastructure and services were considered reliable. Thus, we only in-
jected faults to the channels. Fault injection was conducted using the NFTAPE
tool [18]. The details of the fault injection campaign are not discussed here,
due to lack of space. We used different machines for the channels and different
workloads. From the analysis of the experimental data, the time needed to per-
form the recovery actions and to service a request, summarized in Table 1, were
derived.

Parameter Description Range

T1 Time to restart the application 0.1 − 0.5

T2 Time to restart the machine 130 − 460

T3 Time to reconstruct the database (1GB) 1000 − 3000

T4 Time to serve a request (at sustained rate) 0.05 − 0.15

Table 1. Parameter values obtained from measurements on the prototype [sec]

4.2 System Models

The system has been modeled using Stochastic Activity Networks (SAN) [22].
We did not develop a detailed model of the channels,i.e., a model consisting as
a large set of fine-grain components (e.g. processes, data structures, OS layer,
HW layer, etc.), since this would have resulted in an unnecessarily large size for
the model. Instead, we considered a channel as a relatively simple component,
consisting of an application object, an OS component, and a database object,
as detailed later in this section. Also, instead of modeling the whole variety
of faults that we have discussed in section 2.2, we considered fault effects as
they manifest as application failures. Conceptually, this is equivalent to using a
fault dictionary to abstract from the component level to the application level. We
assume intermittent application failures with an increasing failure rate according
to a lognormal distribution [21] , since this hypothesis is consistent with the fact
that the extent of the damage of the channels increases with time (if no recovery
action is taken). The channel failure modes which we considered are:

– Timing Errors - The channel returns no value (before the Voter timeout
expires);

– Value Errors - The channel returns a wrong value. More precisely: i) it re-
turns a value different from what is actually stored in the physical database;
ii) it stores to the physical database a value different from the input ; iii) it
does not perform the requested operation.

The composed model of Figure 3 represents the hierarchical model of the
system behavior. It consists of ten logically separate SANs (Recovery, Client,
GTDBServer1, GTDBServer2, GTDBServer3, FailModelDBServer1, FailMod-
elDBServer2, FailModelDBServer3, ResultProviderVoter, and DiagnosticBlock),
joined through common places by the Join1 operation. The SAN Recovery mim-
ics system behavior as different types of recovery actions are taken. During re-
covery, the system does not serve requests. The SAN ’Client’ represents the
service requests, the status of the replies to the clients (correct, detected erro-
neous, undetected erroneous) and the number of replicated servers which are still
online. The SANs GTDBServer1, GTDBServer2, GTDBServer3 represent the

Client

Join1

GTDBServer1 GTDBServer2 GTDBServer3

FailModelDBServer1 FailModelDBServer2 FailModelDBServer3

Recovery

ResultProviderVoter

DiagnosticBlock

Fig. 3. Composed Model of the System

three replicas of the DB server and the GatewayThread processes (used to par-
allelize the activity of the Gateway. The SANs FailModelDBServer1, FailMod-
elDBServer2, FailModelDBServer3 represent the failure behaviour of each chan-
nel. The SAN ResultProviderVoter represents the time and the actions of the
ResultProvider (which receives the result sets from the GatewayThreads and de-
livers them to the Voter), and the Voter. The SAN DiagnosticBlock represents
the behavior of the TBM.

For the sake of brevity, in the following only two of the sub-models are de-
scribed in detail. Figure 4 depicts the SAN ’Recovery’. The activity Recovery
represents the deterministically distributed time of recovery, depending on the
type of recovery action. For example, the time for reconstructing the database
depends on the number of records in the database, represented by the number
of tokens in the place nRecords1, nRecords2, nRecords3. The activity Recov-
ery is enabled by the DiagnosticBlock (which triggers the recovery by putting
a token in the place recovery) and the Client models (which remove a token by
the token busyServer when the current request has been served). The C code in
the output gate Recovered enables the marking changes due to the restoration
of the DataBase or due to the restarting of the application and the OS of the
three channels (after restoration all the OS of the channels are restarted). The

busyServer

osRestart3

osRestart2

osRestart1applRestart1

applRestart2

applRestart3

DBRebuild3

DBRebuild2

DBRebuild1

isRecovery
Recovery

recovery

Recovered

nRecords1

nRecords2

nRecords3 nCorrRecords3

nCorrRecords2

nCorrRecords1 alphaState1II

alphaState2II

alphaState3II

endRecovery

DBServer1ON

DBServer2ON

DBServer3ON

applCrash1 osCrash1nOSValFail1nApplValFail1 applStart1 osStart1

nApplValFail2

nApplValFail3 nOSValFail3

nOSValFail2 applCrash2

applCrash3 osCrash3

osCrash2 applStart2

applStart3 osStart3

osStart2

currentValFail1

currentValFail2

currentValFail3

start1

start2

start3

to1

to2

to3

Start1

Start2

Start3

crash1

crash2

crash3

ISto1

ISto2

ISto3

osValFail1

osValFail2

osValFail3

voteDB
vote

DBRecovered

DBnoRecovered

nDBServersON

Fig. 4. SAN ’Recovery’

output gates DBRecovered and DBnoRecovered represent the marking changes
for modeling the success or the failure of the restoring of the DataBase, respec-
tively. The output gates Start1, Start2, Start3 represent the marking changes for
modeling the restarting of the application and the OS of the three DB servers.
Figure 5 depicts the SAN ’FailModelDBServer1’. The Lognormal (or Weibull)
distributed activities ApplFail and OSFail represent the times to failure of the
application and of the OS, respectively. The two associated cases represent the
probability of crash (case 1) and of value failure (case 2). After the i-th failure,
the time to next failure is reduced by using a distribution with a mean equal to
the original one divided by i. ApplFail and OSFail are restarted with the original
distributions after each restart of the application or of the OS, respectively.

5 System Evaluation

This section describes the results obtained so far on parameter tuning and over-
all system dependability via combined use of direct measurements on the system
prototype and analytical modeling. Table 2 reports the main parameters of the
SAN model and their default values. These, together with the ones reported in
Table 1, which were extracted from direct measurements, were used to populate
the analytical model. For all parameters, the higher extreme of the range mea-
sured has been used as the reference value for that parameter in the evaluation
of the SAN model. Our analysis consists of two main parts. The first part shows

ApplFail

OSFail

nextApplFail

nextOSFail

currentValFail1

applCrash1

nApplValFail1

osCrash1

nOSValFail1

crash1

applStart1

osStart1

IsApplStart

IsOSStart

applRestart1

osRestart1DBRebuild1busyServer

applCrashFail

osCrashFail

osValFail1
DBServer1ON

Fig. 5. SAN ’FailModelDBServer1’

how to derive indications about tuning the parameters of the alpha-counts in or-
der to reach good performance of the fault treatment strategy. The second part
reports some measures of system availability obtained using the SAN model.

5.1 Tuning of the parameters

A good performance of the system can be reached if one properly understands
how frequently and under which system conditions the restoration procedure
should be scheduled. The procedure is triggered by the second alpha-count and
since the records can be corrupted, but cannot be corrected by a service re-
quest, it must be KII=1. The recovery follows a majority voting approach and,
if the database is not correctly recovered (upon completion there are still erro-
neous records) the system halts with a failure. The probability that this recovery
procedure reaches its goals, i.e., that a correct version of the database can be
reconstructed is evaluated as a function of the amount of corrupted records ex-
isting in the three replicas. We assume: i) a uniform distribution of erroneous
data, ii) that corrupted replicas of the same record are perceived as different, and
iii) (conservatively) that all the replicas contain the same number of corrupted
records. Under these assumptions, a good approximation of the probability pk

that there are ”k” erroneous records after executing the recovery procedure is
obtained using a binomial distribution:

pk =
(

N

k

)

qk(1 − q)N−k, where:
q = q1q2q3 + q1q2(1 − q3) + q1(1 − q2)q3 + (1 − q1)q2q3

qi =
N

e

i

N

Ne
i
=number of erroneus records of the Channel i

Figure 6(a) plots p0, i.e. the probability of correctly restoring all the records of
the database, for N = 10000. Having in mind the desired probability of suc-

Parameter Default value

KI (1st alpha-count) 0.99

TI (1st alpha-count) 2, 3

KII (2nd alpha-count) 1

TII (2nd alpha-count) 3

Probability of Application Crash 0.75

Probability of OS Crash 0.75

N: nr. of records in the Database 10000

Request rate [s−1] 0.005

Probability of an Update Request 0.2

Probability of a Query Request 0.8

µA, µO (par. of the Lognormal) 14

αA, αO (par. of the Lognormal) 0.6

mean (of the Lognormal) [days] 16.7

variance (of the Lognormal) [days] 12651129
Table 2. Parameters and their default values used in the evaluation

cessfully restoring one replica of the database, one can now relate the number
of corrupted records to the threshold of the second alpha-count which is used
to trigger the recovery procedure. Figure 6(b) reports the number of erroneous
records of a replica of the database as a function of TII as estimated with our
SAN model of the system. Figure 6(b) shows that, in the settings chosen, the

Fig. 6. (a) Probability of success of the recovery procedure as a function of the number
of corrupted records, (b)Number of corrupted records as a function of the TII of the
second alpha-count for different values of TI (KI=0.995)

number of corrupted records is always very low ranging from about 2 for low
values of TII to 5 when TII goes to 10. In more details, for the same TII the
higher is TI the higher the number of corrupted records. Figure 6(a) shows that

in the range 2-5 of the number of corrupted records the probability of correct
recovery varies from .999 to .992. However this should not be a concern: chances
of correct recovery are higher than .99.

5.2 Availability

We considered a time frame of one year, and we measured the cumulated time
in which the system is available for providing services i.e., the availability. Due
to our will to account for many non exponential events (e.g., the failure process
modeled as a lognormal and the duration of the recovery procedures modeled
as constants), the SAN models were solved by simulation with UltraSAN [22].
Figure 7 reports the expected availability of the system in a one year period as
a function of the value of the parameter KI of the first Alpha-count for several
values of TI the threshold of the first alpha-count. TII the threshold of the second
alpha-count is fixed to 3. The availability is computed accounting both for the
time spent in doing recovery and for a potential complete failure of the system.

Fig. 7. Expected availability of the system in one year, as a function of KI the param-
eter of the first alpha-count for several values of TI (TII=3)

The figure shows that setting TI =1 gives a constant availability: in this case
the value of KI does not play any role. Instead when TI assumes values greater
than 1 the impact of KI on the availability can be noticed. Given a value for
TI one can notice that for increasing values of KI the availability first increases
until it reaches a maximum and then becomes worse. The utility of the first
alpha-count and of the distinction between the first two recovery actions can
be noticed by considering that the best combination of TI and KI gives better
availability than the case with TI =1.

Figure 8 reports the expected unavailability of the system in a one year period
as a function of the value of the second threshold TII for three different values

(1, 2 and 3) of TI the first threshold and KI fixed to 0.99. The unavailability is
computed accounting for both the time spent in doing recovery and the outage
due to complete failure of the system.

Fig. 8. Expected availability of the system in one year, as a function of TII (the
threshold of the second alpha-count) for TI=1, 2 and 3 assuming KI=0.99

The point TII=1, TI=1 shows the unavailability of the system without our
fault treatment mechanisms: all the recovery actions are performed at each error
detection. The figure shows that the system improves for growing values of TII .
The best availability is obtained with TI = 2. In this scenario setting TI = 3
appears to be not very rewarding, the unavailability remains approximately con-
stant, probably because too many errors affect the database before restoration is
performed. Overall the figure shows that with a good tuning of the parameters
using our fault treatment strategy one can reduce 5 times the unavailability from
.05 to .01.

6 Conclusions and Future Work

This paper described a fault-tolerant distributed legacy-based system which has
been implemented as a middle-tier based architectural framework to leverage the
dependability of an existing application. The application used as a case study
consists of legacy code, written in C, which uses a COTS DBMS, for persistent
storage facilities. The application runs on Linux, on top of a commodity personal
computer. Three different kinds of faults in the application have been consid-
ered: i) hardware-induced software errors in the application; ii) software errors
(i.e., process and/or host crashes or hangs); and iii) errors in the physical data-
base (i.e., corrupted data in the system stable storage). The system is organized

as a TMR and failure data collected by the voter is provided to the diagnos-
tic subsystem, consisting of a filtering unit and a threshold-based component
(TBM). The TBM uses filtered failure data to update three alpha-count pairs,
one for each replica of the back-end servers. The two alpha-counts composing
individual pairs are used to discriminate among alternative recovery actions. We
considered three possible recovery actions: Action 1 (application restart), Ac-
tion 2 (host restart), and Action 3 (data base restoration). In order to evaluate
our system i.e., the effectiveness of the proposed fault-treatment strategy and
to tune the parameters of its mechanisms, we developed a SAN model of the
overall system consisting of ten sub-models joined together. We performed sev-
eral evaluations by simulation in order to account for non exponential events.
Values for the model parameters were extracted from direct measurements on
the system prototype. The analysis, although still preliminary, shows: i) how to
set proper values for the parameters, and ii) the efficacy of the system which
calibrates different recovery actions.

ACKNOWLEDGEMENTS

This work has been partially supported by the Italian Ministry for Education,
University and Research (MIUR) within the projects: FIRB “WEB-MINDS:
Wide-scalE, Broadband, MIddleware for Network Distributed Services”, “Stru-
menti, Ambienti e Applicazioni Innovative per la Societá dell’Informazione” ,
SOTTOPROGETTO 4, and Legge 449/97 Progetto “SP1 Reti Internet: effi-
cienza, integrazione e sicurezza”.

References

1. Microsoft Corporation (2002), NET Framework Reference,
http://msdn.microsoft.com/netframework/techinfo/documentation/default.asp

2. B. Shannon (2002), Java 2 Platform Enterprise Edition Specification, v1.4,
http://java.sun.com/j2ee

3. J. Arlat, J.-C. Fabre, M. Rodrguez, F. Salles, Dependability of COTS Microkernel-
Based Systems, IEEE Transactions on Computers, 2002 (Vol. 51, No. 2)

4. P. Narasimhan, and P.M. Melliar-Smith, State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects, in proc. of The 2001 International
Conference on Dependable Systems and Networks, 2001.

5. C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Berman, D.A. Karr, M. Cukier, AQuA:
An Adaptive Architecture that Provides Dependable Distributed Objects, in proc.
of The IEEE 17th Symposium on Reliable Distributed Systems, 1998.

6. Z.T. Kalbarczyk, R.K. Iyer, S. Bagchi, K. Whisnant, Chameleon: a Software In-
frastructure for Adaptive Fult Tolerance, IEEE Trans. on Parallel and Distributed
Systems, vol. 10, pp. 560–579, 1999.

7. R. Baldoni, C. Marchetti, M. Mecella, A. Virgillito, An Interoperable Replication
Logic for CORBA Systems, in proc. of The 2nd International Symposium on Dis-
tributed Object Applications 2000 (DOA00), 2000.

8. B. Natarajan, A. Gokhale, S. Yajnik, and D.C. Schmidt, DOORS: TowardsHigh-
performance Fault-tolerant CORBA, in proc. of International Symposium on Dis-
tributed Objects and Applications (DOA’00), 2000.

9. D. Cotroneo, N. Mazzocca, L. Romano, S. Russo, Building a Dependable System
from a Legacy Application with CORBA, Journal of Systems Architecture, vol. 48,
pp. 81–98, 2002.

10. J.C. Fabre, T. Perennou, A metaobject architecture for fault-tolerant distributed
systems: the FRIENDS approach, IEEE Transactions on Computers, vol. 47, pp.
78–95, 1998.

11. A. Avizienis, J.C. Laprie, and B. Randell, Fundamental Concepts of Dependability,
LAAS, Technical Report n.ro 01145, Tolosa (France), Technical Report n.ro 01145
2001.

12. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, F. Grandoni, Threshold-
Based Mechanisms to Discriminate Transient from Intermittent Faults, IEEE Trans-
actions on Computers, vol. 49, pp. 230–245, 2000.

13. D. Powell, G. Bonn, D. Seaton, P. Verissimo, F. Waeselynck, The delta-4 approach
to dependability in open distributed computing systems, in Proc. of the 18th Inter-
national Symposium on Fault Tolerant Computing Systems (FTCS 18), 1988.

14. O.M. Group, Fault-Tolerant CORBA Specification, v1.0, OMG,
http://www.omg.org, document ptc/00-04-04 2001.

15. L. Romano, S. Chiaradonna, A. Bondavalli, D. Cotroneo, Implementation of
Threshold-based Diagnostic Mechanisms for COTS-based Applications, in proc. of
The 21st IEEE Symposium on Reliable Distributed Systems (SRDS 2002), Osaka,
Japan, 2002.

16. K.K. Goswami, R.K. Iyer,Simulation of Software Behavior Under Hardware
Faults,in Proc. of the 23rd Annual International Symposium on Fault-Tolerant Com-
puting, 1993.

17. R.K. Iyer, D. Tang, Experimental Analysis of Computer System Fault tolerance”,
in chapter 5 of Fault-Tolerant Computer System Design, D.K. Pradhan, Prentice
Hall Inc., 1996.

18. D. Stott, P. H. Jones, M. Hamman, Z. Kalbarczyk, R. K. Iyer, NFTAPE: networked
fault tolerance and performance evaluator, in proc. of International Conference on
Dependable Systems and Networks, 2002.

19. D.E. Bakken, Z. Zhan, C.C. Jones, D.A. Karr, Middleware support for voting and
data fusion, presented at DSN01- IEEE International Conference on Dependable
Systems and Networks, Gotenburg, Sweden, 2001, pp. 453–462.

20. DBench Consortium, Measurements, Deliverable ETIE1, IST-2000-25425 Depend-
ability Benchmarking (DBench), 2002.

21. R. Mullen, The Lognormal Distribution of Software Failure Rates: Origin and
Evidence, in proc. of The Ninth International Symposium on Software Reliability
Engineering, Paderborn, Germany, 1998.

22. W. H. Sanders and J. F. Meyer, A Unified Approach for Specifying Measures of
Performance, in Dependable Computing for Critical Applications, vol. 4 of Depend-
able Computing and Fault-Tolerant Systems, A. Avizienis, H. Kopetz, and J. C.
Laprie, Eds.: Springer Verlag, 1991, pp. 215-237.

23. Ken Birman, Robert Constable, Mark Hayden, Christopher Kreitz, Ohad Rodeh,
Robbert van Renesse, Werner Vogels,The Horus and Ensemble Projects: Accom-
plishments and Limitations, in Proceedings of the DARPA Information Survivability
Conference & Exposition (DISCEX ’00), 2000.

24. D. Cotroneo, A. Mazzeo, L. Romano, S. Russo, Implementing a CORBA-based ar-
chitecture for leveraging the security level of existing applications, 8th International
Symposium on Distributed Objects and Applications (DOA 2002), Lecture Notes
in Computer Science Series, LNCS 2519, Springer Verlag, 2002.

